
KrdWrd
Architecture for Unified Processing of Web Content

Johannes Steger
Neurbiopsychology Group

Institute of Cognitive Science
University of Osnabrück
jsteger@acm.org

Egon Stemle∗
Computational Linguistics Group

Institute of Cognitive Science
University of Osnabrück
estemle@uos.de

Abstract

Algorithmic processing of Web content
mostly works on textual contents, neglect-
ing visual information. Annotation tools
largely share this deficit as well.

We specify requirements for an architec-
ture to overcome both problems and pro-
pose an implementation, the KrdWrd sys-
tem. It uses the Gecko rendering engine
for both annotation and feature extraction,
providing unified data access in every pro-
cessing step. Stable data storage and col-
laboration control scripts for group anno-
tations of massive corpora are provided
via a Web interface coupled with a HTTP
proxy. A modular interface allows for lin-
guistic and visual data feature extractor
plugins.

The implementation is suitable for many
tasks in the Web as corpus domain and be-
yond.

1 Introduction

Working with algorithms that rely on user-
annotated Web content suffers from two major
deficits:

For annotators, the presentation of Web sites in
the context of annotation tools usually does not
match their everyday Web experience. The lack
or degeneration of non-textual context may nega-
tively affect the annotators’ performance and the
learning requirements of special annotation tools
may make it harder to find and motivate annota-
tors in the first place.

Feature extraction performed on annotated Web
pages, on the other hand, leaves much of the infor-
mation encoded in the page unused, mainly those
concerned with rendering.

∗Now at CIMeC, University of Trento, 38068 Rovereto.

In this paper, we present the design (2) and im-
plementation (3) of the KrdWrd architecture that
addresses these two issues. Section 4 contains
a proof of concept in the context of CleanEval,
i.e. the cleaning arbitrary web pages, and Section
5 concludes with an outlook on the possible appli-
cations and implementation improvements.

2 Design

2.1 Design Goals
We aim to provide an architecture for Web data
processing based on the unified treatment of data
representation and access on both the annotation
and the processing side. This includes an applica-
tion for users to annotate a corpus of Web pages by
classifying continuous text elements and a back-
end application that processes those user annota-
tions and extracts features from Web pages for fur-
ther automatic processing.

2.2 Requirements
Flexibility The system should be open enough to

allow customization of every part but also,
specifically provide stable interfaces for more
common tasks to allow for modularization.

Stability We need a stable HTTP data source that
is independent of the original Website, in-
cluding any dependencies such as images,
style-sheets or scripts.

Automaticity Back-end processing should run
without requiring any kind of human interac-
tion.

Replicability Computations carried out on Web
page representations must be replicable
across systems, including any user-side pro-
cessing.

Quantity Corpus size should not influence the
performance of the system and total process-



ing time should scale linearly with the cor-
pus.

Usability Acquisition of manually classified cor-
pora requires a fair amount of contributions
by users annotating pages. Achieving a high
level of usability for the end-user therefore is
paramount. As a guideline we should stay as
close as possible to the everyday Web experi-
ence. We also need to provide tools for learn-
ing how to use the annotation tool and how to
annotate Web pages.

2.3 Core Architecture

To address these requirements, we developed an
abstract architecture, a simplified version of which
is depicted in Figure 1. We outline the rationale for
the basic design decisions below.

For rendering a Web page, an object tree is
constructed from its HyperText Markup Language
(HTML) source code. This tree can be traversed
and its nodes inspected, modified, deleted and
created through an API specified by the World
Wide Web Consortium’s (W3C) Document Ob-
ject Model (DOM) Standard (Hors et al., 2004).
Its most popular use case is client-side dynamic
manipulation of Web pages, for visual effects and
interactivity. This is most commonly done by ac-
cessing the DOM through a JavaScript interpreter.
Essentially, a page’s DOM tree gives access to all
the information we set out to work on: structure,
textual content and visual rendering data. There-
fore, it serves as the sole interface between appli-
cation and data.

While all browsers try to implement some part
of the DOM standard (currently, Version 3 is only
partially implemented in most popular browsers),
they vary greatly in their level of compliance as
well as their ability to cope with non-standard
compliant content. This leads to structural and
visual differences between different browsers ren-
dering the same Web page.

Therefore, to guarantee replicability, we require
the same DOM engine to be used through the en-
visioned system.

To reach a maximal level of automaticity and
not to limit the quantity of the data, it is important
that data analysis takes place in a parallel fashion
and does not require any kind of graphical inter-
face, so it can e.g. be executed on server farms. On
the other hand we also need to be able to present
pages within a browser to allow for user annota-

Webserver, Database, Proxy

DOM Engine

Annotation Data Analysis

Browser Headless

Figure 1: Basic KrdWrd Architecture: both
users annotating corpus pages through their Web
browser and back-end applications working on the
data run the same DOM engine. The central server
delivers and stores annotation data and coordinates
user submissions.

tion. Consequently, the same DOM engine needs
to power a browser as well as a headless back-end
application, with usability being an important fac-
tor in the choice of a particular browser.

The annotation process, especially the sequence
of presentation of pages, is controlled by a cen-
tral Web server – users cannot influence the pages
they are served for annotation. Thereby any num-
ber of concurrently active users can be coordinated
in their efforts and submissions distributed equally
across corpus pages. All data, pristine and anno-
tated, is stored in a database attached to the Web
server. This setup allows the architecture to scale
automatically with user numbers under any usage
pattern and with reasonable submission quantities.

Stability of data sources is a major problem
when dealing with Web data. As we work on Web
pages and the elements contained in them, simple
HTML dumping is not an option – all applications
claiming to offer full rewriting of in-line elements
fail in one way ore another, especially on more dy-
namic Web sites. Instead, we use a HTTP proxy
to cache Web data used in our own storage. By
setting the server to grab content only upon first
request and providing an option to turn off down-
load of new data, we can create a closed system
that does not change once populated.

3 Implementation

We maintain the implementation in a source code
repository at http://krdwrd.org. The doc-
umentation includes pointers to the required exter-
nal software.

This section will first describe the DOM engine



and its use by browser and back-end application
(3.1), then the details of the implementation of
central storage and control (3.2), and will end with
listing possible feature extractors for the back-end
(3.3).

3.1 DOM Engine

The choice of DOM engine is central to the imple-
mentation. We reviewed all major engines avail-
able today with respect to the requirements listed
in 2:

The KDE Project’s KHTML drives the Kon-
querer browser and some more exotic ones, but
lacks a generic multi-platform build process.

This practical limitation is lifted by Apple’s fork
of KHTML, called WebKit. It is the underlying
engine of Safari browsers on Mac OS X and Win-
dows. There also exists a Qt and a GTK based
open source implementation. Whereas they are
quite immature at the moment and not very widely
used, this will change in the future and WebKit
will certainly become a valuable option at some
point.

Whereas the open source variant of Google’s
browser, Chromium, promises superior execu-
tion speed by coupling WebKit with its own V8
JavaScript engine, it suffers from the same prob-
lem as WebKit itself namely, not being stable
enough to serve as reliable platform – the Linux
client for example is barely usable, a Mac client
does not even exist, yet.

We also briefly evaluated Presto (Opera) and
Trident (Microsoft), but discarded them due to
their proprietary nature and lack of suitable APIs.

The Gecko engine (Mozilla Corporation), in
conjunction with its JavaScript implementation
Spidermonkey, marks a special case: It imple-
ments XUL (Goodger et al., 2001), the XML User
Interface Language, as a way to create feature rich
cross-platform applications. The most prominent
of those is the Firefox browser, but also e.g. Thun-
derbird, Sunbird and Flock are built with XUL.
An add-on system is provided that allows extend-
ing the functionality of XUL applications to third-
party code, which gains full access to the DOM
representation, including the XUL part itself. The
proposed KrdWrd back-end can be implemented
in the same manner as Firefox: provide custom
JavaScript and XUL code on top of Mozilla’s core
XUL Runner. Code can easily be shared between
a browser add-on and XUL applications and un-

supervised operation is trivial to implement in a
XUL program.

Given the synergy attainable in the XUL ap-
proach and Firefox’ popularity amongst users, it
was a simple decision to go with Mozilla Gecko
for the core DOM implementation. We note that
WebKit’s rise and fast pace of development might
change that picture in the future.

3.1.1 Firefox Add-on

Interactive visual annotation of corpus pages via
Web browser is realized by the KrdWrd Fire-
fox Add-on. The imposed annotation base data
(Müller and Strube, 2003) are text elements in
the DOM tree, which are non-overlapping word-,
phrase-, and character-level strings, i.e. we do not
superimpose a different structure. 1 The anno-
tation then, is non-hierarchical, i.e. a single node
can only be classified into one class at a time, and
continuous, i.e. a class can only be assigned to one
node at a time.

To facilitate adoption, it comes with a com-
prehensive user manual and an interactive tuto-
rial (see below in 3.2.1). For easy setup, Fire-
fox’s proxy configuration is automatically pointed
to a preconfigured host, respective credentials are
auto-added to the password manager and the user
is directed to a special landing page upon success-
ful installation. The proxy feature also serves as a
nice example of code shared between add-on and
application. Furthermore, the installation binary
is digitally signed, so the user does not have to go
through various exception dialogs.

Once installed, the functionality of the Add-
on is available via a broom icon in the status
bar. Whereas it offers several functions centered
around annotation and corpus selection, its core
feature is simple: In highlight mode (the broom
turns fuchsia) the mouse hovering over the page
will highlight the text blocks below the cursor.
The block can then be annotated using the context-
menu or a keyboard short-cut, which will change
its color to the one corresponding to the annotation
class. Figure 2 shows a fully annotated page and
the context-menu.

1However, while grabbing documents we surround text
nodes of running text with additional <KW>-Elements: this
delimits large amounts of text under a single node in the
DOM tree, i.e. when the whole text could only be selected
as a whole, these elements loosen this restriction but, on the
other hand, do not affect the rendering of the Web page or
other processing steps.



Figure 2: Web pages can be annotated with the
KrdWrd Firefox Add-on by hovering over the text
by mouse and setting class labels by keyboard
short-cut or pop-up menu.

3.1.2 XUL Application
The XUL application consists of a thin JavaScript
layer on top of Mozilla’s XUL Runner. It mainly
uses the XUL browser control to load and ren-
der Web pages and hooks into its event handlers
to catch completed page load events and the-like.
Without greater C level patching, XUL still needs
to create a window for all of its features to work.
In server applications, we suggest using a virtual
display such as Xvfb to fulfill this requirement.

During operation the application parses the
given command-line arguments, which triggers
the loading of supplied URLs (local or remote) in
dedicated browser widgets. When the “load com-
plete” event fires, one of several extraction rou-
tines is run and results are written back to disk.
The implemented extraction routines are:

grab for simple HTML dumps and screen-shots,

diff for computing a visual difference rendering
of two annotation vectors for the same page,

merge for merging different annotations on the
same Web page into one in a simple voting
scheme, and

pipe for textual, structural and visual data for the
feature pipelines.

3.2 Storage and Control

Central storage of Web pages and annotation data
is provided by a database. Clients access it via
CGI scripts executed by a Web server while the
back-end uses python wrapper scripts for data ex-
change.

Figure 3: During the tutorial, a Visual Diff be-
tween the user’s submission and the sample data
is presented right after submission. Here, the an-
notation from Figure 2 was wrong in tagging the
sub-heading “ITSS Helpdesk”: the correct annota-
tion (yellow) is highlighted in the feedback in dark
color – contrary to the heading “Information Tech-
nology Services Support” that was tagged cor-
rectly and hence, shows up in light color.

3.2.1 Web Server
Server-side logic is implemented by Python CGI
scripts, thus any Web server capable of serving
static files and executing CGI scripts is supported.
Users can access the server directly by URL or
via the Firefox Add-on menu. An overview
page rendered by the server provides a submission
overview as well as a detailed per-corpus submis-
sion list. In conjunction with the Add-on, server
side scripts control serving of corpus pages by
summing over submissions in the database and
randomly selecting a page from those with the
least total submission number. The Web server
also delivers the actual HTML data to the client,
whereas any embedded objects are served by the
separate proxy server. Furthermore, it controls the
tutorial: Users are presented with sample pages
and asked to annotate them. Upon submission, a
server side script compares the user’s annotation
with a reference annotation stored in the database
and generates a page that highlights differences.
The result is delivered back to the user’s browser,
as seen in Figure 3.

3.2.2 Database
The database mainly stores the raw HTML code of
the corpus pages. User submissions are vectors of
annotation classes, the same length as the number
of text nodes in a page. In addition there is a user
mapping table that links internal user ids to exter-



nal authentication. Thereby user submissions are
anonymized, yet trackable by id.

Given the simple structure of the database
model, we choose to use zero-conf database back-
end sqlite. This should scale up to some thousand
corpus pages and users.

It is important to note that any database con-
tent must be pre-processed to be encoded in UTF-
8 only. Unifying this bit of data representation
at the very start is essential to avoid encoding
hell later in the process. To this end, we rely
on Mozilla’s Universal Charset Detector2, which
is part of the Gecko engine, a mature composite
approach to language/encoding detection (Li and
Momoi, 2001) – the UTF-8 encoded output is fed
into the database.

3.2.3 Proxy
Any object contained in the corpus pages needs
to be stored and made available to viewers of
the page without relying on the original Internet
source.

Given an URL list, initial population of the
proxy data can easily be achieved by running the
XUL application in grabbing mode while letting
the proxy fetch external data. Afterwards, it can
be switched to block that access, essentially cre-
ating a closed system. We found WWWOffle to
be a suitable proxy with support for those features
while still being easy to setup and maintain.

3.3 Feature Extractors

The XUL Application extracts information from
corpus pages and dumps it into the file-system,
to serve as input to specialized feature extractors.
This implementation focuses on feature extraction
on those nodes carrying textual content, provid-
ing one feature vector per such node. We there-
fore generate one feature vector per such node
through a linguistic, visual and DOM-tree focused
pipeline.

3.3.1 Text
For linguistic processing, the Application dumps
raw text from the individual text nodes, with lead-
ing and trailing whitespace removed, converted to
UTF-8 where applicable, i.e. the quirks of han-
dling languages such as Chinese and Japanese,
or even bi-directional languages like Hebrew are
transparent to our processing and the subsequent

2http://www.mozilla.org/projects/intl/
detectorsrc.html

Figure 4: Coordinates of a node’s bounding box
(straight) and text constituents (dotted) as pro-
vided to the visual processing pipeline.

applications need to be capable of handling these
languages. External applications can read these
data and write back the feature vector resulting
from their computation in the same format.

For Computational Linguistic tools relying on
phrase-level structured input, e.g. tokenizers, the
Application can also dump raw text that more
closely resembles the rendered output, i.e. para-
graphs, spanning multiple nodes, are merged to-
gether and dumped in one line; each line – and
hence, feature vector – is then duplicated as many
times as nodes that are spanned.

3.3.2 Structural
During an Application run, a set of “DOM-
Features” is directly generated and dumped as fea-
ture vector.

Choosing the right DOM properties and apply-
ing the right scaling is a non-trivial per-application
decision. Our reference implementation includes
features such as depth in the DOM-tree, number of
neighboring nodes, ratio text characters to HTML
code characters, and some generic document prop-
erties as number of links, images, embedded ob-
jects and anchors. We also provide a list of the
types of node preceding the current node in the
DOM-tree.

3.3.3 Visual
For visual analysis, the Application provides full-
document screen-shots and coordinates of the
bounding rectangles of all text nodes.3 When
text is not rendered in one straight line, multiple
bounding boxes are provided as seen in Figure 4.
This input can be processed by any application
suitable for visual feature extraction.

For simple statistics dealing with the coordi-
nates of the bounding boxes, we use a Python
script to generate basic features such as total area

3This Extractor requires at least XUL Runner Version
1.9.2 (corresponding to Firefox Version > 3.5) which is still
in beta at the time of this writing.



Table 1: BootCaT seed terms for Canola corpus

history coffee salt
spices trade road toll
metal silk patrician
pirate goods merchant

covered in pixel, number of text constituents, their
variance in x-coordinates, average height and the-
like.

4 Case Study

The current implementation comprises an exten-
sive system for pre-processing and automated
cleaning of Web pages, i.e. a typical Web-as-
corpus task, where users are provided with accu-
rate Web page presentations and annotation utili-
ties in a typical browsing environment, while su-
pervised machine learning algorithms also operate
on representations of the visual rendering of Web
pages.

The sequence of steps includes corpus creation
and acquisition of hand-annotated training data on
that corpus (4.1), feature extraction (4.2), training
of a classifier and producing annotated test results
(4.3).

The underlying data, tools, and programs are
bundled with the KrdWrd distribution as usage ex-
ample.

4.1 Data Acquisition

Gathering a set of sample pages is the first step
before utilizing people to tag new data. Therefore,
we acquired a new corpus named Canola by using
the BootCaT (Baroni and Bernardini, 2004) tool
to produce a URL list from the seed terms in Table
1 using the Yahoo search engine.

To populate the proxy, we ran the Application
on every URL once and also extracted the tex-
tual content of the pages. We then filtered for text
lengths between 500 and 6,000 characters 4 and
ran the Application once again, this time dumping
the raw HTML code of the pages in UTF-8 format.
During this second pass, the proxy is switched to
block access to external sources. This ensures that
no dynamic external content makes it into the cor-
pus data, while letting innocent content pass. See
Figure 5 for an example.

4. . . for Chinese these numbers had to be cut down to 50
and 600, however.

Figure 5: IFrames with dynamic URLs which usu-
ally come from advertisements are blocked as a
nice side-effect of the Proxy setup.

The resulting HTML is post-processed to en-
sure that references and encodings are con-
sistent: The head tag is expanded by a
<base href="original url" /> line, so
a browser later viewing the dumped HTML will
request embedded objects by their original URLs,
which can then be served by the proxy. After re-
moving any non-UTF-8 encoding hints, the data is
fed into the database’s page table, with a unique
page id and the corpus id.

The pre-processed data is now ready to be pro-
cessed by annotators. For gathering training data,
students were asked to go through the ten Web
page annotation tutorial once – to get acquainted
with the annotation tool, i.e. the Add-on, and dif-
ferent aspects of how to apply the guidelines 5 to
real-world Web pages – and then annotate pages
from the Canola corpus as part of an homework
assignment. The annotation process consisted of
tagging text on Web pages with three tags ‘good’,
‘bad’, and ‘uncertain’.

Over the course of two weeks, about 60 students
provided a total average of 7.75 annotations per
page. As the time data in Figure 6 suggests, users
learn quickly; Average per-page annotation times
drop well below three minutes after some training.
The tutorial with its ten pages took on average 22
minutes to complete; note however, these pages
were shortened and stripped down to illustrate par-
ticular aspects of Web pages.

Integration of the Add-on in users’ environ-
ments was flawless and we did not receive any
reports of usability or general handling problems.

5A refined version of the official ‘CLEANEVAL: Guide-
lines for annotators’ http://cleaneval.sigwac.
org.uk/annotation_guidelines.html available
at https://krdwrd.org/manual/html.



Manual inspection of submissions also did not
show any anomalies, but to the contrary, indicated
that submitters took great care to provide adequate
annotations (c.f. Figure 7).

1 2 3 4 5

Minutes spent on Page

Figure 6: Time spent for annotation of a single
Web page across all annotators of the Canola cor-
pus.

The data obtained from user annotations was
next merged into a single corpus using the Ap-
plication’s merge function (c.f. 3.1.2), resulting
in a total of 216 corpus pages, each backed by
up to 8 user submissions. Different treatment of
JavaScript on the client side resulted in partial mis-
alignment on some pages: dynamic client code
had inserted or re-ordered nodes in some instance
while not in others. We extended the merge proce-
dure to accept some fuzziness in node matching,
but still lost data from about 5% of submissions
that could not be re-aligned. Until this problem is
solved, we turn off JavaScript for Web content via
the Firefox Add-On. Note that attaching unique
IDs to text nodes is only a partial solution to this
problem: A common JavaScript idiom is to clone
an existing element and to populate it with new
content, ultimately leading to different nodes with
the same “unique” ID.

4.2 Extraction Pipeline
Feature Extraction commences by running the
KrdWrd application extraction pipeline over the
merged data obtained during annotation. For the
Canola corpus’ 216 pages, it took 2.5 seconds on
average per page to generate text (2.5 million char-
acters total), DOM information (46575 nodes to-
tal), screen-shots (avg. size 997x4652 pixels) and
a file with the annotation target class for each text
node.

We only used the stock KrdWrd features on the
DOM tree and visual pipeline. For computing tex-

Inter−Coder Agreement

N
um

be
r 

of
 P

ag
es

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
20

40
60

80

Figure 7: Fleiss’s multi-π agreement (Artstein
and Poesio, 2008) between submissions for pages
over the Canola corpus.

tual features, we borrowed Victor’s (Spousta et al.,
2008) text feature extractor.

4.3 Experiment

We used the data gathered by the feature extrac-
tion for training a Support Vector Machine (Chang
and Lin, 2001). We used an RBF kernel with opti-
mal parameters determined by a simple grid search
to create ad-hoc models on a per-pipeline basis.
The total number of feature vectors corresponded
to the number of text nodes in the corpus and was
46575. Vector lengths for the different pipelines
and test results from 10-fold cross validation are
shown in Table 2.

Although the results for the single pipelines
look quite promising – especially the surprisingly
good performance of the visual pipeline given its
limited input – combinations of feature sets in a
single SVM model perform only marginally bet-
ter. We therefore suggest running separate classi-
fiers on the feature sets and only merging their re-
sults later, possibly in a weighted voting scheme.
DOM features would certainly benefit most from
e.g. a classifier that can work on structured data.

4.4 Inspecting Classifier Results

The classification results can be back-projected
into the DOM-trees using the Application’s diff
function. As in the tutorial for annotators, it pro-
duces a visual diff, showing where the classifier
failed. Note that these results are just Web pages,
so they can be viewed anywhere without the help
of the Add-on. This quickly turned out to be a
valuable tool for evaluation of classification re-
sults.



Table 2: 10-fold cross validated classification test
results for different combinations of the textual
(cl), DOM-property based (dom) and visual (viz)
pipelines on the Canola data set obtained using
stock SVM regression with a RBF kernel.

Modules Feat. Acc. Prec. Recall
cl 21 86% 61% 76%
dom * 13 65% 64% 56%
viz * 8 86% 64% 82%
cl dom * 34 67% 74% 57%
dom viz * 21 67% 72% 59%
cl viz 29 86% 63% 78%
cl dom viz 42 68% 76% 58%

* data obtained by training on reduced number of
input vectors.

5 Conclusion

Employing KrdWrd in the Canola case study
showed that we achieved what we set out for and
gave some valuable experience for possible im-
provements:

The KrdWrd Firefox Add-On is the first tool for
Web page annotation that integrates flawlessly into
a users daily browsing experience. It is unobtru-
sive and has a simple and intuitive user interface.
Users quickly learn how to annotate and produce
quite uniform results, given sufficient annotation
guidelines.

The KrdWrd application and supporting infras-
tructure are a reliable platform under a real-world
usage scenario. By decoding any input data to
UTF-8 at the moment it enters the system and
ensuring that we explicitly deliver UTF-8 exclu-
sively throughout the system, we circumvented all
usual encoding problems.

The overall handling of JavaScript is not
satisfactory. To address the diversions be-
tween submits occurring after dynamic client-side
JavaScript execution on different clients, the Add-
on could hook into the node creation and clone
processes. They could be suppressed entirely or
newly created nodes could grow a special id tag to
help identifying them later.

For result analysis, we would like to expand the
visual diff generated from classification results.
Showing results from separate runs on different
subsets of the data or different parameters on one
page would facilitate manual data inspection. Pre-
senting selected feature values per node might also
help in developing new feature extractors, espe-

cially in the DOM context.
Furthermore, we would like to integrate the

JAMF framework (Steger et al., 2008), a
component-based client/server system for building
and simulating visual attention models, into the
tool chain. This would allow for features based
on the analysis of the rendered pages akin to how
humans perceive these pages while browsing.

Summarizing, we designed and implemented an
architecture for holistic treatment of Web pages
in classification tasks. We demonstrated that the
KrdWrd system can be used to automatically build
an annotated corpus from user submissions. We
also showed the broad set of features for text,
structure and imagery it can help to extract, and
how their contribution to classification can be as-
sessed graphically.

References
Ron Artstein and Massimo Poesio. 2008. Inter-coder

agreement for computational linguistics. Computa-
tional Linguistics, 34(4):555–596.

Marco Baroni and Silvia Bernardini. 2004. Bootcat:
Bootstrapping corpora and terms from the web. Pro-
ceedings of LREC 2004.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIB-
SVM: a library for support vector machines.
Software available at http://www.csie.ntu.
edu.tw/˜cjlin/libsvm.

Ben Goodger, Ian Hickson, David Hyatt, and Chris Wa-
terson. 2001. Xml user interface language (xul) 1.0.
Recommendation, Mozilla.org.

Arnaud Le Hors, Philippe Le Hgaret, Lauren Wood,
Gavin Nicol, Jonathan Robie, Mike Champion, and
Steve Byrne. 2004. Document object model (dom)
level 3 core specification. Recommendation, W3C.

Shanjian Li and Katsuhiko Momoi. 2001. A composite
approach to language/encoding detection. In 19th
International Unicode Conference.

Christoph Müller and Michael Strube. 2003. Multi-
level annotation in mmax. In Proc. of the 4th SIG-
DIAL.

Miroslav Spousta, Michal Marek, and Pavel Pecina.
2008. Victor: the web-page cleaning tool. In
Proceedings of the 4th Web as Corpus Workshop
(WAC4) – Can we beat Google?

Johannes Steger, Niklas Wilming, Felix Wolfsteller,
Nicolas Höning, and Peter König. 2008. The jamf
attention modelling framework. In Lucas Paletta
and John K. Tsotsos, editors, WAPCV, volume 5395
of Lecture Notes in Computer Science, pages 153–
165. Springer.


