eurac research

Using Language Learner Data for Metaphor Detection

Egon Stemle (Eurac Research) and Alexander Onysko (University of Klagenfurt)

Background

- Participation in Metaphor Shared Task Feb/March 2018 (Workshop NAACL 18)
 - Automatic metaphor detection in VU Amsterdam
 Metaphor Corpus

Outline

- Conceptual metaphor theory [Alex]
- Basis of the shared task: VU Amsterdam Metaphor Corpus [Alex]
- Our approach: hypothesis [Alex / Egon]
- Computational implementation [Egon]
- Results and discussion [Alex / Egon]

- => "...metaphor is pervasive in everyday life, not just in language but in thought and action. Our ordinary conceptual system, in terms of which we both think and act, is fundamentally metaphorical in nature."
- => "If we are right in suggesting that our conceptual system is largely metaphorical, then the way we think, what we experience and what we do every day is very much a matter of metaphor."

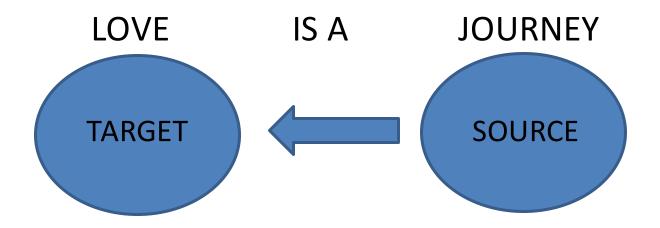
(Lakoff & Johnson 1980: 3)

- Example 1:
 - I don't think this relationship is going anywhere.
 - We'll just have to go our separate ways.
 - We're at *a crossroads*.
 - This relationship is *a dead-end street*.
 - => LOVE (RELATIONSHIP) IS A JOURNEY

- Example 2:
 - Your claims are *indefensible*.
 - His criticisms were *right on target*.
 - She shot down all of my arguments.
 - He *destroyed* my opinion.

=> ARGUMENT IS WAR

- Structure of conceptual metaphors:
 - Association btw a target and a source
 - Metaphorical link btw domains consists of correspondences/mappings



- Cognitive evidence for conceptual metaphor theory:
 - Embodied simulation processes:
 - Experience of physical warmth → more emotional attachment to people (cf. Citron & Goldberg 2014)
 - People moving things up/down while recounting autobiographical memories: up = more positive vs. down = more negative (Casasanto & Dijkstra 2010)

- Questions:
 - Level of describing conceptual metaphors (domain labels)?
 - Primary metaphors vs. complex metaphors PROGRESS IS MOTION vs. LIFE IS A JOURNEY
 - Universality vs. cultural specificity?

• Basic premise

 − Linguistic evidence → conceptual processes (conceptual metaphors)

- Surface text \rightarrow metaphorical expressions

Shared Task

- => Goal: to detect, at the word level, all metaphors in a given text.
- Two tracks:
 - All Part-Of-Speech (POS)
 - All content words (nouns, verbs, adverbs, adjectives)
 - Verbs
 - Exclusion of all forms of *be*, *do*, and *have* for both tracks.

Shared Task - dataset

- VU Amsterdam Metaphor Corpus (2010):
 - BNC Baby (text fragments of BNC)
 - 117 text fragments of 4 genres (academic, fiction, news, conversation); ≈ 190,000 lexical units
 - Uneven distribution of metaphors across genres:
 - Academic: 18.5 %
 - News: 16.4 %
 - Fiction: 11.7 %
 - Conversation: 7.7 %

Shared Task - dataset

• VU Amsterdam Metaphor Corpus (2010):

Data		Training		Testing						
	#texts	#tokens	%M	#texts	#tokens	%M				
Verbs										
Academic	12	4,903	31%	4	1,259	51%				
Conversation	18	4,181	15%	6	2,001	15%				
Fiction	11	4,647	25%	3	1,385	20%				
News	49	3,509	42%	14	1,228	46%				
		All F	POS							
Academic	12	27,669	14%	4	6,076	24%				
Conversation	18	11,994	10%	6	5,302	10%				
Fiction	11	15,892	16%	3	4,810	14%				
News	49	17,056	20%	14	6,008	22%				

Verbs and All POS datasets. The table reports the number of text fragments from BNC, number of tokens and percentage of tokens marked as metaphor group by genres.

Source: Leong, Klebanov & Shutova (2018: 58)

VU Amsterdam Metaphor Corpus

- Manual annotation according to MIPVU (cf. Steen et al. 2010):
 - A lexical unit is marked as metaphorical "if the lexical unit has a more basic contemporary meaning in other contexts than the given context" and if "the contextual meaning contrasts with the basic meaning but can be understood in comparison with it."
 - Pragglejaz (2007: 3)

VU Amsterdam Metaphor Corpus

- Manual annotation according to MIPVU (cf. Steen et al. 2010):
 - Metaphor related words (mrw):
 - Indirect metaphors
 - Direct metaphors
 - Implicit metaphors (e.g. anaphoric reference pronouns,...)

VU Amsterdam Metaphor Corpus

- Problematic cases of manual annotation:
 - The 63-year-old head of Pembridge Investments, through which the bid is being mounted says, 'rule [?] number one in this [?] business is: the more luxurious the luncheon rooms at headquarters, the more inefficient the business'. [a1efragment01-5]
 - There are other things he has, on his own admission [?], not fully investigated, like the value of the DRG properties, or which part of the DRG business he would keep after [?] the break up [!]. [a1efragment01-7]

Our approach: hypothesis

- Using language learner data to train machine learning algorithm (neural networks)
 - Relationship of metaphor use and EFL proficiency (Littlemore et al. 2014; Beigman Klebanov & Flor 2014)
 - \rightarrow more metaphors = higher proficiency

Selection of corpora

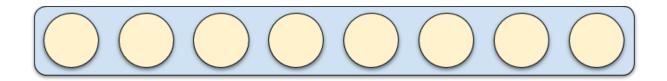
- Learner Data:
 - TOEFL 11 (T11) corpus (Blanchard et al. 2013):
 - Test taker essays (proficiency subsets: high, medium, low)
 - VOICE: Corpus of ELF
- Reference corpora:
 - BNC, enTenTen13, ukWaC, ukWaC (T11 size), Wikipedia17

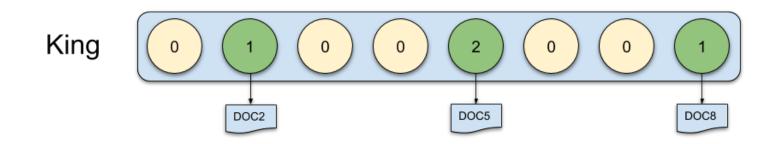
Vector Space Model

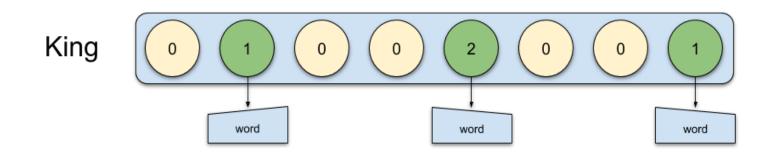
Words that occur in similar contexts tend to have similar meanings.

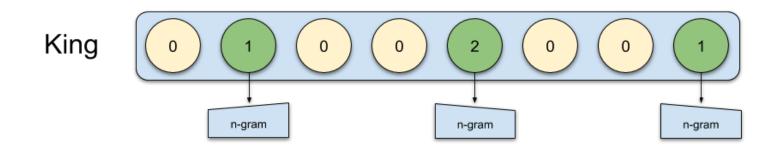
"You shall know a word by the company it keeps" (Firth, 1957)

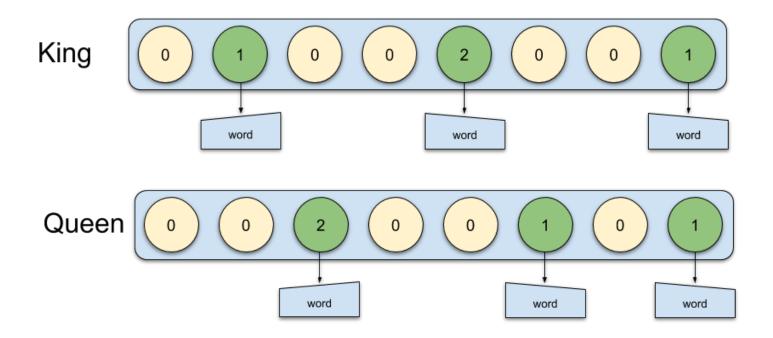
(...; Wittgenstein, 1953; Harris, 1954; Weaver, 1955; ...)





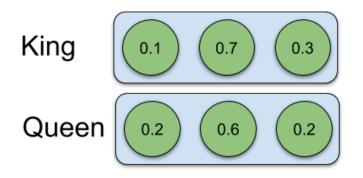




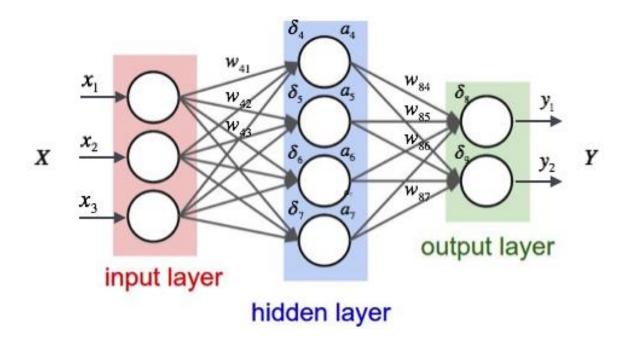


Vector Space Model, Semantic Vector
 Space, Distributional Semantic Model, Word
 Embeddings

PCA/SVD/LSA/LSI/LDA/NN



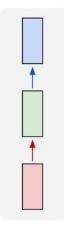
Neural Networks



Source: medium.com/@curiousily

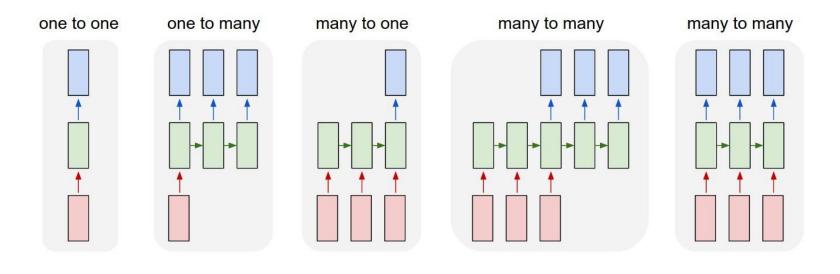
Recurrent Neural Networks

one to one



Source: Andrej Karpathy blog

Recurrent Neural Networks



Source: Andrej Karpathy blog

- Our system combines *trending techniques*, which implement matured methods from NLP and ML.
- In particular, word embeddings from standard corpora and from *corpora representing different proficiency levels of language learners* in a LSTM BiRNN architecture.

Shared Task – results (Leong, Klebanov, Shutova 2018: 61-62)

	Rank	Team	Р	R	F1	Approach
				All	POS (Or	verall)
	1	THU NGN	0.608	0.700	0.651	word embeddings + CNN + Bi-LSTM
Overall	2	OCOTA	0.595	0.680	0.635	word embeddings + Bi-LSTM + linguistic
Overall	3	bot.zen	0.553	0.698	0.617	word embeddings + LSTM RNN
results for	4	Baseline 2	0.510	0.696	0.589	UL + WordNet + CCDB + Logistic Regression
all POS	5	ZIL IPIPAN	0.555	0.615	0.583	dictionary-based vectors + LSTM
allPUS	6	Baseline 1	0.521	0.657	0.581	UL + Logistic Regression
	7	DeepReader	0.511	0.644	0.570	word embeddings + Di-LSTM + linguistic
	8	Samsung_RD_PL	0.547	0.575	0.561	word embeddings + CRF + context
	9	MAP	0.645	0.459	0.536	word embeddings + Bi-LSTM + CRF
	10	nsu_ai	0.183	0.111	0.138	linguistic + CRF

	Rank	Team	Р	R	F1	Approach
					Verbs (C) verall)
•	1	THU NGN	0.600	0.763	0.672	word embeddings + CNN + Bi-LSTM
Overall	2	bot.zen	0.547	0.779	0.642	word embeddings + LSTM RNN
results for	3	ZIL IPIPAN	0.571	0.676	0.619	dictionary-based vectors + LSTM
verbs	4	DeepReader	0.529	0.708	0.605	word embeddings + Di-LSTM + linguistic
	5	Baseline 2	0.527	0.698	0.600	UL + WordNet + CCDB + Logistic Regression
	6	MAP	0.675	0.517	0.586	word embeddings + Bi-LSTM + CRF
	7	Baseline 1	0.510	0.654	0.573	UL + Logistic Regression
	8	nsu_ai	0.301	0.207	0.246	linguistic + CRF

Source: Leong, Klebanov, Shutova (2018: 61f.)

	Tokens (Mio)	min Cnt	dim	T11 (low)	T11 (med)	T11 (high)	T11 (l+m+h)	VOICE	BNC	enTen13	ukWaC	ukWaC T11-size	Wikipedia17	F1-score on Test Set	Acco on Trai	ld CV uracy ning Set $-\sigma$
T11 (low)	0.3	1	50	X										0.207	0.917	0.016
T11 (med)	1.8	1	50		Χ									0.526	0.924	0.011
T11 (high)	1.4	1	50			X								0.514	0.930	0.007
T11 (l+m+h)	3.5	1	50				Χ							0.541	0.928	0.008
VOICE	1	1	50					Χ						0.495	0.923	0.010
BNC	100	5	100						Χ					0.597	0.942	0.005
enTenTen13	19,000	5	100							Χ				0.594	0.947	0.004
ukWaC	2100	5	100								Х			0.598	0.945	0.004
ukWaC T11-size	3.5	1	50									Х		0.564	0.933	0.009
Wikipedia17	ca 2300	5	300										X	0.586	0.947	0.003

Tokens (Mio)	min Cnt	dim	T11 (low)	T11 (med)	T11 (high)	T11 (l+m+h)	VOICE	BNC	enTenTen13	ukWaC	ukWaC T11-size	Wikipedia17	F1-score on Test Set	Acc on Trai	old CV uracy ning Set $-\sigma$
7			X	X	X						Х		0.576	0.941	0.003
7						X					Х		0.567	0.936	0.008
103.5			X	X	X			Χ					0.596	0.944	0.008
103.5						Χ		Х					0.613	0.945	0.005
103.5								Х			Х		0.597	0.948	0.003
104.5			X	X	X		Х	Χ					0.601	0.950	0.004
107						X		Χ			Χ		0.586	0.951	0.002
108						Χ	Χ	Χ			Χ		0.550	0.948	0.003
19,004.5			X	X	X		Χ		X				0.603	0.947	0.006
21,400								Χ	Χ			Х	0.605	0.951	0.003
$21,\!401$							Χ	Χ	Χ			Х	0.594	0.953	0.003
$21,\!404.5$			X	Χ	X		Х	Х	Χ			Χ	0.597	0.952	0.003

Genre	F-value	No metaphor (cor / incor)	Metaphor (cor / incor)
Academic	0.696	4150 / 459	1028 / 439
News	0.644	4146 / 541	885 / 436
Fiction	0.505	3574 / 586	418 / 232
Conversation	0.502	4268 / 490	347 / 194

 They held up the bright new diesel buses and, even worse, blocked the progress of private motorists in bulbous Austins and lumpen Humbers in canyon-like city thoroughfares.

• They were inflexible in operation, draughty [!], and mobile [!] reminders of TB epidemics with the enamelled, Do Not Spit, signs...

Conclusion

- Useful results & they tend to support our hypothesis
 - Large unlabeled data set (readily available for many languages)
 - Small-ish manually annotated data set
 - Does not rely on WordNet, VerbNet, concreteness/abstractness information, etc. (used to be the base in previous workshops)
 - Learner Data does carry some viable information for the task

Thank you

Questions / Discussion